Biometrics: technologies, challenges, and research directions

Vincenzo Piuri
Università degli Studi di Milano
vincenzo.piuri@unimi.it
https://piuri.di.unimi.it
Biometrics

Biometrics is defined by the International Organization for Standardization (ISO) as:

“the automated recognition of individuals based on their behavioral and biological characteristics”
Authentication Techniques

Security level

Method

- Something you have
- Something you know
- Something you are or you do
Verification vs Identification

Verification (Authentication):
Am I who I say to be?

one-to-one \((1:1)\) operation

Identification: *Who am I?*

one-to-many \((1:N)\) operation

- STANDARD IDENTIFICATION: finds 1 result (best candidate)
- SCREENING: finds \(k\) possible results (candidates)

\(N\) times longer!
Error increases!
(w.r.t. Verification)
Biometrics Offers Positive and Negative Recognition

POSITIVE Verification or Identification
Determine with high accuracy that the user is who he says she/he is.

- Preventing the use of a single identity by *multiple* people

NEGATIVE Verification or Identification
Determine with high accuracy that user is NOT who he says she/he is.

- Preventing the use of *multiple* identities by a *single* person
- The **black/watch list** case: “You are not in the list” = Negative Identification
Behavior Recognition for Security

- Motion
- Gesture
- Emotion
- ...

(image of people expressing different emotions, image of hand gestures, and graph-like visualization of data)
Biometric Applications
Physical Access Control

- Critical areas
- Restricted areas
- Private areas
- Public buildings
- Sports arenas
- Bank caveau
- Transportations
- ...

[Images of access control systems and security features]
Government Applications

- Identity card, passport
- Electoral cards, driver license
- Healthcare card
- Automated Border Control
- Police identification
Surveillance

• Buildings
• Public areas
• ...
Logical Access Control to Services

- Home banking, ATM
- Credit cards
- Supermarkets
- E-commerce
- Cellular phones
- Computers
- Data
- ...

[Images of various devices and access control systems]
Smart Environments

• Smart home/building
• Smart entertainment systems
• Smart cars/transportation
• Intelligent traffic management
• Smart shops
• Information kiosks and augmented reality
Personalized Interactions

• Social networks
 face recognition for automated tagging

• Virtual assistants
 voice recognition for personalized speech recognition

• e-commerce systems
 emotion recognition for personalized interaction

• ...
Humanitarian and Forensics Applications

- Recognition of victims
- Refugee protection
- Welfare and food distribution
- Prevention of human trafficking
- Prevention of terrorism
- ...

[Images of humanitarian and forensic applications]
Market Trend (1)

BIOMETRIC TECHNOLOGY MARKET SIZE, 2021 TO 2030 (USD BILLION)

Source: www.precedenceresearch.com
Market Trend (2)

Biometric Technology Market Size, By Type, 2017 - 2027

Source: www.kbvresearch.com
Biometric Systems
Operation
Enrollment

Biometric trait \rightarrow Template \rightarrow DataBase
Verification

Name, PIN

User-declared Identity

Quality Checker

Acquisition Module

Feature Extraction Module

Matching Module

DataBase

1 Template

Yes/No

Sample

Trait

Template

User-declared Identity
Identification

Trait → Acquisition Module → Feature Extraction Module → Matching Module → DataBase

Quality Checker

Sample

User Identity / User not identified

Trait Template

N Template
Decision
Impostor and Genuine Recognition

False Match Rate (FMR)
False Non-Match Rate ($FNMR$)
Equal Error Rate (EER): $FNMR=FMR$
Biometric Systems Evaluation

- Accuracy
- Speed
- Usability
- Cost
- Scalability
- Interoperability
- Security
- Privacy

Social Acceptance

- High
- Medium
- Simple
- Complex
- Zero
- 1 type
- 6 types

Accuracy

- 99.0
- 99.99
- 99.9999
- 20
- 100
- 10000

Usability

- High
- Medium
- Simple
- Complex
- Zero

Cost

- High
- Medium
- Simple
- Complex
- Zero

Scalability

- High
- Medium
- Simple
- Complex
- Zero

Interoperability

- High
- Medium
- Simple
- Complex
- Zero

Security

- High
- Medium
- Simple
- Complex
- Zero

Privacy

- High
- Medium
- Simple
- Complex
- Zero

Privacy

- High
- Medium
- Simple
- Complex
- Zero
Biometric Traits and Biometric Research Directions
Biometric Traits

Physiological
- Fingerprint
- Face
- Iris
- Palm
- Retina
- Hand geometry
- Hand veins
- Ear
- DNA
- ECG
- EEG
- ...

Behavioral
- Voice
- Signature
- Keystroke
- Gait
- Gesture
- Emotion
- ...

Time (seconds)
Fingerprint

- Oldest and most widespread used trait
- Fingerprint is a pattern of ridges and valleys that develops from a causal configuration already present from embryo
- Can be found on the fingers, palms and underfoot
- They are believed to be unique (based on current knowledge)
- The pattern does not change in time

Two fingerprints of the same person

Fingerprints of two different persons!
Fingerprint Recognition Methods

Capture methods
- Optical live-scan
- Solid-state live-scan
- Ultrasound live-scan

Matching algorithms
- Level 1: global ridge flow
- Level 2: minutiae points
- Level 3: fine details such as skin pores and inter-ridge information
Fingerprint Image Quality

Local image defects
• Partially merging ridges
• Low contrast
• Few visible minutiae
• Artifacts caused by image compression
• Latent fingerprints
• Big “gaps” between the ridges
• “Linked” ridges

Factors that influence quality
• Physical factors: age, skin condition
• Behavioral factors: applied pressure, willingness to cooperate
• Environmental factors: temperature, moisture
• Operational factors: user familiarity, feedback, sensor cleaning, ergonomics
Fingerprint Recognition: Research Directions (1)

Current performance
FNMR=0.001 at FMR=0.001

Current and future research areas
• Less-constrained acquisition
• High displacement/rotation
• Non-linear distortion
• Bad skin condition
• Feature extraction errors
• Matching millions of samples
• Exploiting extended features
• Robust orientation modeling
• Automated latent processing
• Learning based methods
• Template protection
• ...

Non-linear distortion
Bad skin condition
Template protection by applying gaussian transformation
Fingerprint Recognition: Research Directions (2)

Contactless Fingerprint

Advantages
- Less-constrained
- No distortions due to pressure on sensor
- More robust to dust and dirt
- Higher user acceptance
- Use in mobile devices with standard cameras

Challenges
- Partially compatible with AFIS
- Complex background
- Sensible to lighting
- Sensible to position
- 2D systems can show distortions
- 3D systems
- Structured light
- Longer computational time

Acquisition

3D reconstruction

Contact-equivalent

Feature extraction

Matching
Face

- Among the least intrusive biometric trait
- Normally used by people to recognize each other
- Sensors: cameras, video / webcam, smartphones, PC, 3D scanner

Challenges
- Change in time (aging)
- Lights and backgrounds change
- Facial expression
- Different poses
- Occlusions
Face Recognition Methods

• Local or feature-based approaches
 Process the input image to identify and extract distinctive facial features such as the eyes, mouth, nose

• Holistic approaches
 Consider the whole face region for the recognition

• Hybrid approaches
 Comparable to the human visual perception
Face Image Quality

- Too close
- Too far
- Damaged or stained
- Faded
- Pointed
- Shadow in background
- Shadow in face
- Other subject
- Objects
- Artistic pose
- Tilted face
- Not centered
- Out of focus
- Too dark
- Too bright
- Unnatural color
- Red eyes
- Covered face
- Wearing a hat
- Eyes covered by hair
- Heavy frame
- Frame covering eyes
- Dark glasses
- Glare on glasses

Image dimensions: 32 - 35 mm

32 - 35 mm

Image dimensions: Damaged or stained

Shadow in background
Face Recognition: Research Directions (1)

Current performance
FNMR=0.003 @ FMR=0.001
outperform humans

Current and future research areas
• Less-constrained acquisition
• Face marks
• Periocular
• Age invariance
• Face at a distance
• Face individuality
• IR face recognition
• Sketch recognition
• …
Face Recognition: Research Directions (2)

-On-the-move Face-

Advantages

• Less constrained
• More usability
• Increased user acceptability

Challenges

• Variability in face position
• Occlusions
• Distorsions
Iris

• Regarded as the most accurate biometric trait
• Numerous and stable in-time characteristics
• Stable (on average) from eight month of life
• Systems are rather complex and expensive, but hard to fraud
• Can be acquired in social media images
Iris Recognition Methods

Iris acquisition
- Near infrared illumination
- Natural light

Iris segmentation

Iris coding and matching
- Daugman method
- “Eigen-Iris” approaches
- Texture filters
- Texture analysis
- Analyze the iris in parts
Iris Image Quality

Quality factors
- Environmental
- User behavior

Assessment methods
- Iris Segmentation Scores
- Interlacing
- Blur
- Illumination
- Lighting
- Occlusion
- Pixel Count
- Dilation
- Off-angle

High quality

Occluded

Off-angle

Blur
Iris Recognition: Research Directions (1)

Current performance
FNMR=0.07 @ FMR=0.0001

Current and future research areas
• Less constrained acquisition
• Improved segmentation
• Cancelable iris code
• Deal with pupil dilation
• Prediction of subject characteristics
• 3D retina representation
Iris Recognition: Research Directions (2)

On-the-move Iris

Advantages

• Less constrained
• More usability
• Increased user acceptability

Challenges

• Variability in iris position
• Variability in eye position
• Occlusions
• Blur and out-of-focus
Palm Print
Contactless Palmprint

Advantages
• Less-constrained
• Low resolutions (< 200 dpi)
• Increased user acceptability
• More robust: distortion, dirt

Challenges
• High accuracy features not always usable
• Low contrast
• Complex background
• Sensible to lighting
• Sensible to position

Recognition algorithms
• Ridge based
• Line based
• Subspace based
• Statistical
• Coding based
Contactless Palmprint: Research Directions

Single view systems: 2D systems
- Cameras, Webcams
- Enhancement + traditional recognition methods

Multiple view systems: 3D systems
- Multiple cameras
- Laser scanners
- Mosaicking of three different views
- Illuminator shaped as a ring-mirror

Systems based on structured light
- Able to estimate the height of the ridge pattern
- Long acquisition time

Unwrapping methods
- Parametric models (e.g. cylinder, sphere, set of rings)
- Non-parametric models based on minimization functions

Quality estimation of acquisition

Improving 3D models
- More robust 3D matching methods
- Robust 3D alignment methods

Simultaneous acquisition with multiple illuminations

Faster acquisition
Retina
Hand Geometry
Hand Veins
Ear Shape
DNA
Physiological Signals for Biometric Recognition

- Difficult to counterfeit
- Only from living people
- Continuous authentication
Voice

• Easily accepted by users
• Low cost
• Low accuracy
• Easy to forge
Signature

- Easy
- Cheap but not accurate
Keystroke
Gait
Gesture
Emotion

Happy Sad Petulant Lonely

Amused Skeptical Furious Wistful

Confused Bored Sarcastic Regretful

Aroused Terrified Proud Mischievous
Soft Biometrics

- Gender
- Age
- Skin color
- Ethnicity
- Hair color
- Eye color
- Weight
- Height
- ...
Which Trait for an Application?

Each trait has different properties and usability

THERE IS NO SINGLE TRAIT WHICH IS GOOD FOR ALL APPLICATIONS
Properties of Biometric Traits

Human characteristic

1. Universality
 each person should have the characteristic

2. Distinctiveness
 any two persons should be sufficiently different in characteristic

3. Permanence (in time)
 the characteristic should be sufficiently invariant over a period of time

4. Collectability
 the characteristic can be measured quantitatively

Technology

5. Performance
 accuracy and computational time should be adequate

6. Acceptability
 extent to which people are willing to accept its use in their daily lives

7. Resistance to Circumvention
 how easily the system can be fooled using fraud
Properties of Biometric Traits

<table>
<thead>
<tr>
<th>Biometrics</th>
<th>Universality</th>
<th>Uniqueness</th>
<th>Permanence</th>
<th>Collectability</th>
<th>Performance</th>
<th>Acceptability</th>
<th>Circumvention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Hand Geometry</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Keystrokes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Hand Vein</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Iris</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Retinal Scan</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Signature</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Voice Print</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>F.Thermograms</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>high</td>
<td>High</td>
</tr>
<tr>
<td>Odor</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>DNA</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Gait</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Ear</td>
<td>Medium</td>
<td>medium</td>
<td>High</td>
<td>medium</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Biometric Systems: Research Directions
Artificial Intelligence

Contactless and on-the-move

Interoperable distributed systems

Ethics and privacy

Mobile and embedded

Multimodal and higher resolution

Contactless and on-the-move

Interoperable distributed systems

Ethics and privacy

Mobile and embedded

Multimodal and higher resolution
Human Beings are Multimodal

While waiting for your friend Laura, someone runs towards you and greeting you

→ The brain performs a multimodal matching

While waiting for your friend Laura, someone runs towards you and greeting you.

→ The brain performs a multimodal matching.

The brain performs a multimodal matching.

67% for Face, 71% for Voice, 30% for Gait, and 7% for Soft biometrics.

67%+71%+30%+7% = 175%

It’s not Laura, it’s Maria, her sister.
Multibiometrics

Data gathering
• Multiple sensors
• Multiple traits (multimodal)
• Multiple instances
• Multiple samples
• Multiple matchers

Fusion logics
• Sensor level
• Feature set level
• Matching score level
• Decision level
Multibiometrics: Research Directions

- New biometric modalities
- New sensors
- More advanced fusion techniques
- Application to mobile devices
- Advanced surveillance and behavior detection
- New antispoofing methods
- ...
Continuous / Periodic Authentication: Research Directions

- Keystroke dynamics, mouse movements
- Face, iris
- Gesture
- Voice
- Gait for mobile devices

Research directions:
- user-friendly biometrics
- soft biometrics
- behavior prediction
- IoT integration
- ...

65
Forgery / Spoofing: Research Directions

- From physical objects
- At a distance
- From social networks
- New anti-spoofing techniques based on liveness (termic, 3D, motion, heart beats, breath, ...)

[Images of physical objects, social networks, and anti-spoofing techniques]
Deepfake: Research Directions

- Digital manipulation of biometric traits by means of generative techniques
- Create fake biometrics
- Fake photos and video are used for fake news
Unauthorized / Unintended Use: Research Directions

• Biometric information sent to a biometric-based system should be used only for the intended purpose

• Inclusion in proscription lists without individual is informed

• Evaluation of social credits
Distributed Biometric Systems: Research Directions

- Distributed search
- Distributed match
- Interoperability
- Trustability
- Applications in ambient intelligence
- Applications in social networks
- Applications in Industry 4.0
- Analysis by artificial intelligence approaches
- ...
Artificial Intelligence: Research Directions (1)
Artificial Intelligence: Research Directions (2)

AI for Data Augmentation

Landmark perturbation for face alignment.

- Flipping patches (clipping)
- Color casting
- Blurring
Artificial Intelligence: Research Directions (3)

AI for Recognition Robustness

Generative Adversarial Networks
Artificial Intelligence: Research Directions (4)

AI for Identity Concealing Detection

subject #1 before makeup

subject #1 after makeup

targets
Biometric Privacy: Research Directions (1)

• Control over use and disclosure of personal identity and information
• Biometric personal identity must be protected
• Biometric traits cannot be replaced
• Use of stolen biometric traits
 • Access to personal information
 • Impersonation
 • Misuse
 • Proscription lists

... using cards and documents

... using real time systems
Biometric Privacy: Research Directions (2)

Privacy in Biometric Applications

1. Privacy-protective applications
 Biometrics protects personal information that might otherwise be compromised like enterprise security,…

2. Privacy-sympathetic applications
 Designed considering privacy protection techniques, most of the current applications

3. Privacy-neutral applications
 Authentication systems for electronic devices

4. Privacy-invasive applications
 Surveillance applications and some national ID services
Biometric Privacy: Research Directions

Risk Analysis

Lower Risk Of Privacy Invasiveness

Greater Risk Of Privacy Invasiveness

Overt

1. Is the system deployed overtly or covertly?

Covert

Mandatory

Optional

2. Is the system optional or mandatory?

Identification

Indefinite

Verification

3. Is the system used for identification or verification?

Public Sector

Private Sector

4. Is the system deployed for a fixed period of time?

Fixed Period

5. Is the system deployed in the public or the private sector?

Employee, Citizen

Institution

Database Storage

Physiological

Individual, Customer

6. In what capacity is the user interacting with the system?

Enrollee

7. Who owns the biometric information?

Personal Storage

8. Where is the biometric data stored?

Behavioral

9. What type of biometric technology is being deployed?

Templates

10. Does the system utilize biometric templates, biometric images, or both?
Biometric Privacy: Research Directions (4)

Biometric Privacy Protection: Attack Points

1. Fake biometrics
2. Replay attack
3. Override (Trojan Horse)
4. Tamper with features
5. Modify match score
6. Tamper with Templates DB
7. Intercept and Modify
8. Override the final decision
Biometric Privacy: Research Directions (5)

Biometric Privacy Protection: Approaches

- **Central Repository**
 - Centralized protection

- **Distributed Repository**
 - Anonymization by distribution

- **Smart Hardware**
 - Privacy rules embedded in hardware

- **Smart Data**
 - Encapsulate access methods inside the data
Biometric Privacy: Research Directions (6)

Biometric Privacy Protection: Techniques

Techniques

• Key-generating, Key-binding, Biometric encryption
• Feature Transformation, Helper Data Approach
• Fuzzy Commitment, Fuzzy Vault, Fuzzy Extractor
• Secure Sketch, Bio-Hashing, Revocable Bio-Token, Biotope
• Bio-Encryptor, ...

Research Directions

• Advanced non-invertible transformations
• Cancellable / revokable biometrics
• Advanced homomorphic encryption for processing in the encrypted domain
• AI for processing in encrypted domain
• Anonymization
• Decentralized biometric cryptosystems, ...
Biometric Privacy: Research Directions (7)

Image and Video Anonymization

Personally Identifiable Information can be removed by advanced computer vision, AI and deep learning, while preserving key biometric attributes.
Biometric Privacy: Research Directions (8)

Personalized Interactions

- Social networks
- Sentiment analysis
- Virtual assistants
- e-commerce systems
- Market analysis
- ...

81
Biometric Privacy: Regulations

• European Union: General Data Protection Regulation (GDPR)
 - biometric data: special category of personal data
 - prohibit processing and storage by third parties without consent
 - prohibit processing for uniquely identifying a natural person, with exceptions (given
 consent, controller’s obligations, other laws, individual's vital interests, critical in
 legal claims, public health)
 - clear scope and capabilities of the system
 - ensure user control of personal data: right to be forgotten
 - disclosure and accountability: data breach must be notified within 72 hours
 - auditing
 - privacy by design and by default

• U.K.: UK GDPR – regulation compliant with GDPR
• California: California Consumer Privacy Act (CCPA) and California Privacy Rights Act (CPRA)
• New York and Virginia follow California
• China: Personal Information Protection Law (PIPL)
• U.S.A. at federal level and India are considering regulations
Ethics in Biometrics

- **Do not harm**: avoid actions that harm people or the environment.
- **Collection**: explicit consensus and clarity in collection purpose.
- **Identity theft**: do not breach systems, steal biometric data that are ineffectively secured, and impersonate individuals.
- **Respect personal data**: when shared, stored, and processed, personal data must be respected and treated with care.
- **Misuse**: biometric data used only for collection-declared purpose.
- **Justice and accountability**: biometrics should be open, transparent, and accountable.
- **Technology quality**: biometric technology should benchmark quality, including accuracy, error detection, repair systems, and protection.
- **Human rights**: applications and use should align with human rights.
- **Equality**: biometric technology should not discriminate based on religion, age, gender, race, sexuality, or others.
Biometrics: technologies, challenges, and research directions

Vincenzo Piuri
Università degli Studi di Milano
vincenzo.piuri@unimi.it
https://piuri.di.unimi.it